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HALO ORBIT GENERATION USING THE CENTER MANIFOLD

Martin W. Lo*

In recent years, halo orbits around the Sun-Earth Lagrange points, L1 and
L2 , have become extremely popular for NASA missions due to the ideal
obsewatlon  environment and iow launch energy (C3=-0.6).  Traditional
methods for the generation of halo otbits require an initial guess provided
by some high order analytic expansion. A separate expansion may be
required for different systems due to differences in perturbations and small
parameter assumptions. Since periodic orbits and quasiperiodic  orbits
live on the center manifold of the Lagrange point, approximations of the
center manifold provide good initiai  conditions for halo orbit generation.
Such a method reiies soleiy  on the dynamics of the three body problem
and is uniformly applicable for all Sun-Planet and Pianet-Moon  systems.
The approximation of the center manifold is achieved by linearizing the
equations of motion of the circular restricted three body problem at the
collinear Lagrange points. Using differential correction, a halo orbit is
quickly found.

INTRODUCTION

The numerical generation of halo orbits about the collinear Iibration points require
an initial first guess. Typically, this is provided by a high order expansion using the
Linstedt-Poincare  method (Ref. 1). For the generation of the stable and unstable
manifolds of a fixed point, the eigenvectors of the linearized equation at the equi-
librium point are used as a first guess (Ref. 2). In this paper, we explore the use
of the eigenvectors  of the imaginary eigenvalues  of the linearized equation at the
Iibration points to generate periodic orbits.

APPROXIMATION OF THE CENTER MANiFOLD

The equations of motion for the Circular Restricted Three Body Problem in nor-
malized rotating coordinates are:
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x“ - 2 y’ = au fax (1)
y’ +2X’ s away

z“ s away
where

u = l/2(x2+ y2) + (l-p)/r + p/R
? = (x+p)2+y2+z2
R2 = (x-l +~)2+y2+z2
v = normalized mass of earth.

This system has 5 equilibrium points, labeled L1 through L5 by convention. We are
interested in the orbits around the unstable collinear points, Ll, L2, and L3. The
linearized equations for this system are:

q’ = M q (2)
where

c1 = (x, y, z, x’, y’, Z’)T

M is a 6x6 matrix with four 3x3 submatrices where

o = zero matrix
I = identity matrix
C2=(o lo)

11001
(000)

and UXX is the matrix of second partials  of U. See Szebehely, Ref. 3 For derivation
and analysis.

To facilitate the discussion, we define a few concepts from invariant manifold
theory. See Wiggins, Ref. 4 for more details. An invariant manifold, S, is a high-
dimensional surface composed of solutions of eq. (1). Given any point, q, on S,
the solution through q is contained in S. Hence, S is “invariant” under the flow of
the solutions. The most familiar examples are fixed points and periodic orbits.
Associated with fixed points, are other types of invariant manifolds: the stable
manifold, the unstable manifold, and the center manifold of the fixed point. These
manifolds partition the phase space into regions with particular dynamics which
can be exploited for mission design purposes. For example, the stable manifold
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has been used to generate launch trajectories from earth to L1, and L2; the unsta-
ble manifold has been used to generate transfer trajectories between L1 and Lz,
and return trajectories between L1, L2 and the earth (see Barden, Howell, & Lo,
Ref. 5). For this discussion we focus on the center manifold.

The center manifold of LI is a four dimensional manifold in R6 where the periodic
and quasiperiodic orbits around L1 live in the phase space. It can be approximated
near L1 by the eigenvectors of the four imaginary eigenvalues  of the matrix M in eq.
(2). For the Sun-Earth L1 (mass parameter p = 3.003480924985e-6, the eigen-
values and their corresponding eigenvectors are given in Table 1:

Table 1
Imaginary Eigenvaiues and their Eigenvectors at L1

kl 2.0864i
el 0.1279, 0.4129i, 0.0000, 0.2668i, -0,8614, 0.0000

L2 -2.0863 i
e2 0.1279, -0.4129i, 0.0000, -0.2668i, -0.8614, 0.0000

k3 1.7495206 i
e3 0.0000, 0.0000, 0,4962, 0.0000, 0.0000, 0.8682i

L4 -1.7495206 i
e4 0.0000, 0.0000, 0.4962, 0,0000, 0.0000, -0,8682i

We note {el, e2}, {e3, e4} are conjugate pairs. Thus by multiplying the pairs with
compiex conjugate coefficients, we may obtain real vectors. Let EC = Span{ el, e2,
e3, e4 } be the vector subspace spanned by these vectors at L1. Clearly, el and
e2 correspond to planar solutions; e3 and e4 correspond to solutions in the z-
direction. These are the two modes of solutions.

NUMERICAL RESULTS

Let P denote the fixed point L1 in R6 coordinates. Then an initial guess for a peri-
odic orbit around L1 is provided by:

X() = P + W1 ‘el + w2*e2 + w3*e3 + w4*e4
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which we write as

Xo = P+w*e (4)

where w = {wI, w2, w3, w4} are coefficients such that {w1, w2} and {w3, w4} are
conjugate pairs. Using standard differential correction methods (see Howell, Ref.
6), periodic orbits are easily constructed for w with small norms. We recall this
algorithm exploits the fact that the halo-family of periodic orbits about L1 are sym-
metric about the xz plane. Hence at the xz-crossing,  the initial state must have the
following form:

X() = ( x(-), o, z*, o, ye’, 0). (5)

At the next intersection of the xz plane, X1 will have the form:

x, = ( x,, o, z,, x,’, y,’, Z,’). (6)

In order for the orbit to be symmetric about the xz plane, the x and z velocities of
X1 must be O. Two differential correction schemes are given in Ref. 6: method 1
fixes Xo, method 2 fixes Zo. With this algorithm, only half an orbit need be inte-
grated to produce the desired periodic orbit.

For planar orbits, Howell’s algorithm is easily adapted. Eqs, (5) and (6) become:

X() = ( X(),  0,0, ye’) (7)
xl = ( x,, o, x,’, y,’).

To generate a periodic orbit symmetric about the xz-plane, yl’ must be eliminated
by differential correction, Figure 1 presents the class of planar orbits for w = p (1,
1,0, O), for p = 1 e-6, 1 e-5, 1 e-4, 1 e-3 generated by fixing Zo, Note, the orbit for
the p = 1 e-6 case is so small it does not appear on the plot.

Figure 2 presents the halo orbit and its intermediate orbits from the differential
correction fixing Z. for w = p (1, 1, 1, 1), where p = 1 e-6. The final orbit has y, z
amplitudes of {4e-3, 1 e-6} as compared with p. While the z-amplitude is small, it
is non-zero, indicating it as one of the first halo orbits. When we perform the
differential correction for the same w above, freeing Z. but fixing X., the final orbit
has y, z amplitudes of{8e-7,2e-16}. Now Z. = -le-6 for this w. Thus this correc-
tion process is pushing the orbit back into the xy-plane.
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It is well known that halo orbits are a non-linear phenomena and do not occur for
small y-amplitudes. What is surprising is that this small magnitude linear approx-
imation is able to generate a halo orbit. We need to understand what exactly is
going on with this Ieap-frogging increase in the y-amplitude from 1 e-6 to 4e-3.

For w = p(O, O, 1, 1), an almost straight-line up-and-down motion in the z-direction
results but is extremely unstable numerically.

CONCLUSIONS

The linear approximation of the center manifold at L1 provides a very simple meth-
od for generating initial guesses for periodic orbits about L1. Surprisingly, it is able
to produce halo orbits with small z-amplitudes. This is a reminder that despite the
large distance the halo orbits are away from L,, they really live on the center man-
ifold of L1.

Using the x-axis control developed by Dunham, Ref. 7, the linear approximation in
eq. (4) should be able to produce small amplitude Iissajous orbits with prescribed
amplitudes using differential correction. In this approach, one controls the x-
coordinate of the orbit as it crosses the xz-plane.

In order to obtain halo orbits with large z-amplitudes, higher order approximations
of the center manifold are required. Instead of the Linstedt-Poincare  expansion,
perhaps the partial differential equation formulation of the center manifold can
provide the required globalization of the manifold. This, of course, is a much more
difficult problem than the series expansion. But what is gained is a global solution
space whose geometry is only hinted at by the expansions. In addition to the
visualization of the manifold, it provides quantitative estimates of the periodic and
quasiperiodic orbits. This knowledge would allow mission analysts to know where
these orbits may be found in the phase space.

Invariant manifolds provide the only real global handle mission analysts have in
this extremely complicated phase space, They provide geometric insight as well
as quantitative information about the orbits. At the ‘QUO VADIS’ Dynamical Sys-
tems Conference held at UCLA in 1996, Moser (Ref. 8) stated that the numerical
computation of invariant manifolds for high dimensional systems is one of the key
challenges in dynamical systems today. We believe the numerical calculation of
these objects is the foundation for the automatic generation of trajectories in this
regime of the three body problem. The applications to mission analysis are nu-
merous: from the launch to halo orbit insertion problem, to station keeping,
formation flying around L1 and L2, and low-thrust control. Each of these problems
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would greatly benefit from a deeper understanding of the invariant manifolds
around the Lagrange points.
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